10.13682/j.issn.2095-6533.2015.06.010
改进的核空间直觉模糊C-均值聚类分割算法
针对鲁棒模糊局部信息C-均值聚类分割算法易丢失图像细节的问题,提出一种改进的核空间直觉模糊C-均值聚类算法.将像素空间邻域信息和直觉指数引入到鲁棒模糊局部信息C-均值聚类目标函数,给出改进的像素空间邻域信息约束的聚类目标函数,对其聚类目标函数最优化推导并得到新的隶属度和聚类中心迭代表达式,并设计相应的图像分割算法,以便提高图像局部信息的有效分割能力.实验结果表明,改进的核空间直觉模糊聚类分割算法相比现有鲁棒模糊局部信息C-均值聚类分割算法能获得更好的分割效果.
模糊C-均值聚类、像素空间邻域信息、核空间、直觉模糊集
20
TP751.1(遥感技术)
国家自然科学基金重点资助项目61136002;陕西省自然科学基金资助项目2014JM8331,2014JQ5138
2015-12-15(万方平台首次上网日期,不代表论文的发表时间)
共6页
45-50