基于人工神经网络的负荷数据预处理
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-4710.2007.03.012

基于人工神经网络的负荷数据预处理

引用
对历史负荷数据进行处理是提高电力系统负荷预测精度首先要解决的问题.脏数据处理的过程就是对于含有脏数据的负荷曲线模式的辨识过程.首先利用自适应共振网络(ART网)对日负荷曲线进行分类,确定出每一类负荷曲线的特征曲线;然后用超圆神经网络(CC网)对特征曲线进行脏数据辨识;最后利用扩展短期负荷预测方法对脏数据进行修正.对某市2002年8月份的数据进行脏数据辨识,结果证明所提出的模型对脏数据的平均检测率为92.11%,效果令人满意.采用该处理过的历史数据对某市2002年8月14日的负荷进行预测,结果表明,利用该方法处理后的数据进行负荷预测提高了负荷预测的精度.

数据预处理、负荷预测、模式识别

23

TM715(输配电工程、电力网及电力系统)

2007-12-03(万方平台首次上网日期,不代表论文的发表时间)

共5页

277-281

相关文献
评论
暂无封面信息
查看本期封面目录

西安理工大学学报

1006-4710

61-1294/N

23

2007,23(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn