小波及奇异值分解在混沌特征计算中的综合去噪研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9315.2006.03.005

小波及奇异值分解在混沌特征计算中的综合去噪研究

引用
观测时间序列的非线性动力学混沌特征研究在电力、气象、地震、边坡等工程领域的应用日益广泛,但观测序列的噪声对研究结果具有重要的影响,人们通常采用傅立叶或者小波变换方法去噪.但对于混沌序列来说,这种去噪方法具有一定的局限性,会造成观测数据一定程度的破坏,对混沌分析结果会产生一定的影响.本文探讨运用小波变换结合奇异值分解(SVD)方法来解决观测时间序列在混沌特征分析时的去噪问题,该方法针对混沌分析过程中的源观测数据特点,首先用小波方法对一维观测序列去噪,并对去噪后的序列计算混沌特征分析中的重要参数-相空间重构参数m,τ,根据m,τ对源一维观测序列进行重构,得到重构的相空间矩阵A,然后对矩阵A采用SVD方法进行处理,通过这两种方法相结合的方式来达到更好的去噪目的.结果表明其去噪效果是明显的,数据经过小波变换和SVD联合处理后其观测序列的混沌特征更明显和易于提取,提高了观测时间序列混沌分析的可靠性.

小波变换、奇异值分解、相空间重构、关联维、混沌特征

26

O221.61(运筹学)

2006-11-07(万方平台首次上网日期,不代表论文的发表时间)

共5页

306-310

相关文献
评论
暂无封面信息
查看本期封面目录

西安科技大学学报

1672-9315

61-1434/N

26

2006,26(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn