采用特征优选和优化深层核极限学习机的短期风电功率预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7652/xjtuxb202301007

采用特征优选和优化深层核极限学习机的短期风电功率预测

引用
针对风电出力非线性、不稳定且用传统方法难以准确预测的问题,提出了一种基于对深层混合核极限学习机(DHKELM)参数进行优化的短期风电功率预测.利用核主成分分析(KPCA)方法进行特征优选得到的最优特征集,既能表达风电功率的有效信息,也能避免冗余信息的出现,有利于DHKELM模型的学习与训练,同时也降低了模型的复杂度.针对DHKELM超参数难确定的问题,利用改进的野犬优化算法(IDOA)对DHKELM的8个超参数进行寻优,可以发掘原始序列特征信息,从而使模型能够充分掌握数值天气预报(NWP)与风电功率之间的非线性关系.以国外某风电场真实数据为算例,结果表明:提出的预测模型相较于野犬算法、差分进化算法和粒子群优化算法的平均绝对百分比误差(MAPE)分别降低了 0.979 3%、2.342 1%、3.383 2%,有效提高了风电功率的预测精度.

短期风电功率预测、深层混合核极限学习机、改进的野犬优化算法、特征优选、核主成分分析

57

TM715(输配电工程、电力网及电力系统)

陕西省自然科学基础研究计划资助项目2021JM-393

2023-04-14(万方平台首次上网日期,不代表论文的发表时间)

共12页

66-77

相关文献
评论
暂无封面信息
查看本期封面目录

西安交通大学学报

0253-987X

61-1069/T

57

2023,57(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn