AHNNet:融合注意力机制的行为识别混合神经网络模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7652/xjtuxb202105014

AHNNet:融合注意力机制的行为识别混合神经网络模型

引用
针对Wi-Fi信号的行为感知研究中传统机器学习方法特征提取困难、深度学习方法特征提取方式单一,导致特征提取不充分、识别准确率不高等问题,提出融合注意力机制的人体行为识别混合神经网络模型A HNNet.在对信道状态信息影响因子分析的基础上,使用信道状态信息的振幅数据作为行为识别的基础数据;采用时间滑窗将长时间人体活动序列分割为短时间序列,构建样本数据,克服全局人体行为数据非实时、长度不固定的缺点;通过双向循环门控网络和时序卷积网络并行提取输入数据特征,充分挖掘数据潜在特征之间的关系;在双向循环门控网络中融合注意力机制以强化数据特征,进一步提高模型性能;将双向循环门控网络和时序卷积网络提取到的特征进行融合,增加特征的多样性;将融合特征输入到Softmax分类器进行分类,得到人体活动数据对应的行为.与长短期记忆网络、双向循环神经网络进行了对比,实验结果表明:在标准数据采集室数据集上,AHNNet的行为识别正确率达到97.15%,比未使用注意力机制的模型分类正确率提高1.81%;在公共数据集上,AHNNet的行为识别正确率比其他对比模型的提高至少0.65%,参数量下降47%;在不同环境下,AHNNet在卧室环境中的正确率为95.7%,比标准数据采集室中的下降1.45%.AHNNet具有良好的识别效果和鲁棒性,并且在复杂的居家环境中应具有应用价值.

人体行为识别、信道状态信息、双向循环门控网络、时序卷积网络、注意力机制

55

TP391(计算技术、计算机技术)

国家自然科学基金61972092

2021-06-02(万方平台首次上网日期,不代表论文的发表时间)

共10页

123-132

相关文献
评论
暂无封面信息
查看本期封面目录

西安交通大学学报

0253-987X

61-1069/T

55

2021,55(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn