图谱数据深度学习融合模型及焊缝缺陷识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7652/xjtuxb202105009

图谱数据深度学习融合模型及焊缝缺陷识别方法

引用
针对当前利用超声衍射时差法(TOFD)图谱数据进行缺陷类型判定时以人工判别为主,主观性大、效率低以及缺乏从波形特征及图像特征进行集成分析的问题,提出了一种深度学习融合模型及焊缝缺陷识别方法.通过对TOFD检测原理及缺陷检测图谱数据特点进行分析,建立了综合考虑波形数据和图像数据的缺陷特征表征方法,实现了缺陷标准数据集构建;通过构建基于时间卷积网络(TCN)的波形序列数据分析模块、基于卷积神经网络(CNN)的图像数据分析模块以及特征自适应融合分类模块,建立了一种可以实现波形序列特征与图像特征综合分析的深度学习融合网络模型(DLFM)及模式分类方法.以企业实际TOFD检测焊缝缺陷数据对所提方法进行了验证,结果表明所提DLFM方法对缺陷类型的识别率明显高于单独使用基于TCN、CNN以及CNN-TCN的方法;所提方法拓展了现有深度学习模型的构建方法,并可以推广应用到其他模式识别领域,具有较强的通用性.

超声衍射时差法、焊缝缺陷识别、自适应融合、深度学习

55

TP391(计算技术、计算机技术)

陕西省市场监管局专项资助项目;国家质量基础的共性技术研究与应用专项;科技计划

2021-06-02(万方平台首次上网日期,不代表论文的发表时间)

共10页

73-82

相关文献
评论
暂无封面信息
查看本期封面目录

西安交通大学学报

0253-987X

61-1069/T

55

2021,55(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn