一种判别极端学习的相关反馈图像检索方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7652/xjtuxb201608016

一种判别极端学习的相关反馈图像检索方法

引用
针对基于支持向量机(SVM)的相关反馈图像检索方法计算复杂度高、缺乏判别能力以及图像特征提取不充分的问题,提出一种基于判别极端学习的相关反馈图像检索(DELM)方法.在图像特征提取阶段,通过连接图像的颜色、纹理及边缘直方图实现图像的特征提取,解决了以往多数检索方法仅使用单一图像特征造成的图像描述不充分的问题;在检索的反馈阶段,将最大边际准则(MMC)引入到极端学习机中,通过分析极端学习机隐层空间的类内离散度和类间离散度得到包含判别信息的分类模型,并给出降维和不降维两种形式,以提高相关反馈图像检索系统的检索能力.DELM方法能有效应用于基于内容的图像检索中,并显著提高图像检索的性能.实验结果表明,DELM方法和采用SVM、ELM和最小类别方差ELM的方法相比,在Corel-1K数据集下检索平均准确率分别提高了11.06%、5.28%和6.40%.

图像检索、相关反馈、支持向量机、极端学习机、判别信息

50

TP391(计算技术、计算机技术)

国家自然科学基金资助项目61372172

2016-09-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

96-102

相关文献
评论
暂无封面信息
查看本期封面目录

西安交通大学学报

0253-987X

61-1069/T

50

2016,50(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn