基于随机波动条件的公交客运量预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-8879.2012.01.017

基于随机波动条件的公交客运量预测模型

引用
针对传统的灰色GM(1,1)预测模型在预测公交客运量中存在误差过大的问题,结合公交客运量随机波动的显著特征,通过对残差序列进行再处理,构造新的数据序列,构建GM(1,1)改进预测模型对公交客运量进行预测,并应用于某城市的2条公交线路客运量预测。结果表明:随机波动条件下的GM(1,1)改进预测模型,使用预测序列与残差序列绝对值之和来构造新序列,对新序列进行建模后预测的公交客运量的平均相对误差分别为4.9%和5.3%,明显优于传统GM(1,1)模型预测的公交客运量的平均相对误差7.5%和7.45%;相对误差最大值分别降低了4.68%和2.99%。

交通工程、公交客运量、预测、GM(1,1)模型、随机波动

32

U491(交通工程与公路运输技术管理)

交通运输部西部交通建设科技项目2011 318 820 1420;中央高校基本科研业务费专项资金资助项目Z1101

2012-04-28(万方平台首次上网日期,不代表论文的发表时间)

85-88

相关文献
评论
暂无封面信息
查看本期封面目录

长安大学学报(自然科学版)

1671-8879

61-1393/N

32

2012,32(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn