10.3969/j.issn.1672-6944.2022.17.026
基于人脸关键点检测的车载疲劳驾驶系统研究
针对传统目标检测面部微表情的模型精度低的问题,转换思路利用人脸识别三元子算法提取人的面部关键点,进行面部关键点的标注,对面部关键点进行欧氏距离计算并与传统目标检测算法结合,从而对人脸面部微表情进行准确识别,并利用闭眼、低头、打哈欠3种预警方法进行互补,并通过车道线分割,进行车辆的行驶异常状态的判断,从而准确对驾驶员进行疲劳驾驶检测,并且可以检测驾驶途中抽烟打电话等不安全行为.采用的面部关键点模型68关键点人脸关键点标注模型,目标检测模型yolov5s,并对神经网络添加了空间向量注意力机制(Convolutional Block Attention Module,CBAM),提高检测准确度.系统法高度集成于开发版中,使得该系统具有方便快捷、准确度高的优势.实验表明,三元子和目标检测以及车道线分割结合的方法,能够有效对驾驶员进行疲劳驾驶面部微表情检测,并且准确率相较于传统方法有了大幅度提高,解决了传统目标检测微表情方法中准确度低、适用范围狭窄、鲁棒性差的问题,能够有效识别疲劳驾驶并及时提醒驾驶员.
疲劳驾驶、人工智能、机器学习、目标检测、语义分割
19
TP391;U471;TP183
2022-11-25(万方平台首次上网日期,不代表论文的发表时间)
共3页
82-84