基于信任模型的社区发现与协同过滤推荐研究与应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-6944.2022.15.027

基于信任模型的社区发现与协同过滤推荐研究与应用

引用
文章改进NMF社区发现算法(Nonnegative Matrix Factorization,NMF),得到基于双属性矩阵的NMF社区发现算法(Double Attribute Matrix Nonnegative Matrix Factorization,DAMNMF),在其社团内部进行推荐.因为数据集评估不足可能造成稀疏性问题,使得推荐的效果变差.针对上述问题,将社区发现和信任模型相结合,得到基于社区发现内部信任模型协同过滤推荐,有可能将那些试图影响推荐准确性的恶意用户去除.考虑到信任可以缓解这些问题,则在社区发现中加入信任这个概念,即基于信任模型双属性矩阵非负矩阵分解(Trust Model Double Attribute Matrix Nonnegative Matrix Factorization,TMDAMNMF)社区发现与协同过滤推荐,在真实数据集上进行实验,研究结果表明推荐效果得到了进一步的提升.

双属性矩阵、社区发现、信任模型、协同过滤、推荐

19

TP301.6;TN914.42;TP18

2022-11-03(万方平台首次上网日期,不代表论文的发表时间)

共5页

89-93

相关文献
评论
暂无封面信息
查看本期封面目录

无线互联科技

1672-6944

32-1675/TN

19

2022,19(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn