基于softmax激活变换的对抗防御方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11959/j.issn.2096-109x.2022016

基于softmax激活变换的对抗防御方法

引用
深度学习广泛应用于图像处理、自然语言处理、网络挖掘等各个领域并取得良好效果,但其容易受到对抗攻击、存在安全漏洞的问题引起广泛关注.目前已有一些有效的防御方法,包括对抗训练、数据变化、模型增强等方法.但是,依然存在一些问题,如提前已知攻击方法与对抗样本才能实现有效防御、面向黑盒攻击的防御能力差、以牺牲部分正常样本的处理性能为代价、防御性能无法验证等.因此,提出可验证的、对抗样本不依赖的防御方法是关键.提出了 softmax激活变换防御(SAT,softmax activation transformation),这是一种针对黑盒攻击的轻量级的快速防御.SAT不参与模型的训练,在推理阶段对目标模型的输出概率进行隐私保护加固并重新激活,通过softmax激活变换与深度模型防御的连接定义,证明通过softmax函数的变换后能实现概率信息的隐私保护从而防御黑盒攻击.SAT的实现不依赖对抗攻击方法与对抗样本,不仅避免了制作大量对抗样本的负担,也实现了攻击的事前防御.通过理论证明SAT的激活具有单调性,从而保证其防御过程中正常样本的识别准确率.在激活过程中,提出可变的softmax激活函数变换系数保护策略,在给定范围内随机选择隐私保护变换系数实现动态防御.最重要的一点,SAT是一种可验证的防御,能够基于概率信息隐私保护和softmax激活变换推导其防御的有效性和可靠性.为了评估SAT的有效性,在MNIST、CIFAR10和ImageNet数据集上进行了针对9种黑盒攻击的防御实验,令所有攻击方法的平均攻击成功率从87.06%降低为5.94%,与多种先进黑盒攻击防御方法比较,验证了所提方法可以达到最优防御性能.

深度学习、对抗防御、可验证、攻击无关

8

TP181(自动化基础理论)

国家自然科学基金;信息系统安全技术重点实验室基金

2022-05-12(万方平台首次上网日期,不代表论文的发表时间)

共16页

48-63

相关文献
评论
暂无封面信息
查看本期封面目录

网络与信息安全学报

2096-109X

10-1366/TP

8

2022,8(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn