深度学习中对抗样本的构造及防御研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11959/j.issn.2096-109x.2020016

深度学习中对抗样本的构造及防御研究

引用
随着深度学习技术在计算机视觉、网络安全、自然语言处理等领域的进一步发展,深度学习技术逐渐暴露了一定的安全隐患.现有的深度学习算法无法有效描述数据本质特征,导致算法面对恶意输入时可能无法给出正确结果.以当前深度学习面临的安全威胁为出发点,介绍了深度学习中的对抗样本问题,梳理了现有的对抗样本存在性解释,回顾了经典的对抗样本构造方法并对其进行了分类,简述了近年来部分对抗样本在不同场景中的应用实例,对比了若干对抗样本防御技术,最后归纳对抗样本研究领域存在的问题并对这一领域的发展趋势进行了展望.

对抗样本、深度学习、安全威胁、防御技术

6

TP309(计算技术、计算机技术)

国家自然科学基金资助项目;黑龙江省自然科学基金资助项目

2020-05-29(万方平台首次上网日期,不代表论文的发表时间)

共11页

1-11

相关文献
评论
暂无封面信息
查看本期封面目录

网络与信息安全学报

2096-109X

10-1366/TP

6

2020,6(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn