基于主成分分析和K-means聚类的平行坐标可视化技术研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11959/j.issn.2096-109x.2017.00189

基于主成分分析和K-means聚类的平行坐标可视化技术研究

引用
为了解决多维数据的维数过高、数据量过大带来的平行坐标可视化图形线条密集交叠以及数据规律特征不易获取的问题,提出基于主成分分析和K-means聚类的平行坐标(PCAKP,principal component analysisand k-means clustering parallel coordinate)可视化方法.该方法首先对多维数据采用主成分分析方法进行降维处理,其次对降维后的数据采用K-means聚类处理,最后对聚类得到的数据采用平行坐标可视化技术进行可视化展示.以统计局网站发布的数据为测试数据,对PCAKP可视化方法进行测试,与传统平行坐标可视化图形进行对比,验证了PCAKP可视化方法的实用性和有效性.

数据可视化、平行坐标可视化、主成分分析、K-means聚类

3

TP301(计算技术、计算机技术)

国家自然科学基金资助项目61373170

2017-09-18(万方平台首次上网日期,不代表论文的发表时间)

共10页

18-27

相关文献
评论
暂无封面信息
查看本期封面目录

网络与信息安全学报

2096-109X

10-1366/TP

3

2017,3(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn