基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化
硅基电极材料在应用中的一个主要问题是巨大的体积膨胀,以及由此带来的电极材料破裂、粉化.本文在有限变形假设前提下,基于电化学-力学耦合理论,研究球形Si/C核壳结构在嵌锂过程中的浓度、应力场的演化,并在此基础上讨论了核壳结构的优化设计.计算结果显示:壳层可以很好地保护硅颗粒的膨胀;然而核内产生的较大的径向压缩应力可能导致核壳界面的脱黏,而核壳界面处的切向拉伸应力可能会导致壳层的断裂.进一步为有效提高核壳结构的电化学与力学性能,从而实现锂离子电池更长的循环寿命,考虑了两种结构的优化:1)单层核壳结构;2)双层核壳结构.结果表明对于单层核壳结构应使用更软的包覆层材料;而双层核壳结构中优化的材料布置方案为内软外硬,对双层核壳结构的硬度分析表明,内层材料的杨氏模量应低于10 GPa,而外层材料的应不高于70 GPa.本文的结论对球形材料颗粒电极的设计及优化具有一定的指导意义.
锂离子电池、电化学-力学耦合、核壳结构、有限变形
70
国家自然科学基金;山西省自然科学基金
2021-09-18(万方平台首次上网日期,不代表论文的发表时间)
共11页
307-317