基于领域相似度的复杂网络节点重要度评估算法
节点重要性度量对于研究复杂网络鲁棒性与脆弱性具有重要意义.大规模实际复杂网络的结构往往随着时间不断变化,在获取网络全局信息用于评估节点重要性方面具有局限性.通过量化节点局部网络拓扑的重合程度来定义节点间的相似性,提出了一种考虑节点度以及邻居节点拓扑重合度的节点重要性评估算法,算法只需要获取节点两跳内的邻居节点信息,通过计算邻居节点对之间的相似度,便可表征其在复杂网络中的结构重要性.基于六个经典的实际网络和一个人工的小世界网络,分别以静态与动态的方式对网络进行攻击,通过对极大连通系数与网络效率两种评估指标的实验结果对比,证明了所提算法优于基于局域信息的度指标、半局部度指标、基于节点度及其邻居度的WL指标以及基于节点位置的K-shell指标.
复杂网络、鲁棒性、节点重要性、领域相似度
66
TN9;TP1
国家自然科学基金批准号: 61571453资助的课题. Project supported by the National Natural Science Foundation of China Grant 61571453
2017-04-12(万方平台首次上网日期,不代表论文的发表时间)
共10页
383-392