基于expectation maximization算法的Mamdani-Larsen模糊系统及其在时间序列预测中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1000-3290.2009.01.018

基于expectation maximization算法的Mamdani-Larsen模糊系统及其在时间序列预测中的应用

引用
Epanechnikov混合模型和Mamdani-Larsen模糊系统之间的对应关系被建立:任何一个Epanechnikov混合模型都唯一对应着一个Mamdani-Larsen模糊系统,在一定条件下,Epanechnikov混合模型的条件均值和Mamdani-Larsen模糊模型的输出是等价的.一个设计模糊系统的新方法被提出,即利用expectation maximization算法设计模糊系统.将设计的模糊系统应用于时间序列预测,仿真结果表明:利用EM算法设计的模糊系统比其他模糊系统精度更高,抗噪性更强.

expectation maximization(EM)算法、Mamdani-Larsen模糊系统、Epanechnikov混合模型、混沌时间序列

58

O4(物理学)

国家自然科学基金60773206/F020106;60704047/F030304;国家高技术研究发展计划863计划2007AAIZ158;2006AA102313

2009-04-03(万方平台首次上网日期,不代表论文的发表时间)

共6页

107-112

相关文献
评论
暂无封面信息
查看本期封面目录

物理学报

1000-3290

11-1958/O4

58

2009,58(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn