基于分子描述符和机器学习方法预测和虚拟筛选MMP-13对MMP-1的选择性抑制剂
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3866/PKU.WHXB201311041

基于分子描述符和机器学习方法预测和虚拟筛选MMP-13对MMP-1的选择性抑制剂

引用
基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑制MMP家族的其它成员,特别是MMP-1,这将会导致肌与骨的综合症.因此,设计和发现潜在的MMP-13相对于MMP-1的高效选择性抑制剂,在对治疗OA新型药物的研发中具有相当重要的现实意义.本研究通过两种机器学习方法(ML):支持向量机(SVM)和随机森林(RF)来建立分类模型,用于预测不同结构的MMP-13对MMP-1的选择性抑制剂.所建这些模型的预测效果都已经达到了令人满意的精度.在这两种ML模型中, RF对于MMP-13选择性抑制剂和非抑制剂的精度分别达到97.58%和100%.同时,与MMP-13对MMP-1的选择性抑制最相关的分子描述符也基于不同的特征选择方法被两种模型挑选出来.最后,用预测效果最好的RF模型虚拟筛选了ZINC数据库的“fragment-like”子集,从而得到了一系列潜在的候选药物.研究表明,机器学习方法,特别是RF方法,对于发现潜在的MMP-13选择性抑制剂十分有效.同时还得到了一些与MMP-13的选择性抑制相关的分子描述符.

基质金属蛋白酶-13、选择性抑制剂、机器学习方法、支持向量机、随机森林、虚拟筛选

O641(物理化学(理论化学)、化学物理学)

The project was supported by the National Natural Science Foundation of China 21173151.@@@@国家自然科学基金21173151

2014-03-20(万方平台首次上网日期,不代表论文的发表时间)

共12页

171-182

相关文献
评论
暂无封面信息
查看本期封面目录

物理化学学报

1000-6818

11-1892/O6

2014,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn