基于混沌理论和PSO神经网络的短时交通流预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-4993.2010.02.028

基于混沌理论和PSO神经网络的短时交通流预测

引用
交通流预测已成为智能交通的重要组成部分,针对短时交通流的非线性和不确定性,文中根据实际交通流中存在的混沌,利用C-C方法和小数据量法对变通流混沌进行了分析,在交通流混沌时间序列相空间重构的基础上构建了基于粒子群优化神经网络的单点单步预测模型,运用该模型对实际采集的美国加州城市快速路交通流数据进行了仿真研究,结果表明,该预测模型具有较高的预测精度,能够满足智能交通控制和诱导的需求.

短时交通流、预测、混沌时问序列、粒子群优化、神经网络

32

U495(交通工程与公路运输技术管理)

2010-05-17(万方平台首次上网日期,不代表论文的发表时间)

共3页

75-77

相关文献
评论
暂无封面信息
查看本期封面目录

物流工程与管理

1674-4993

42-1791/TS

32

2010,32(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn