结合SS-GAN和BERT的文本分类模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-629X.2023.02.028

结合SS-GAN和BERT的文本分类模型

引用
BERT是近年来提出的一种大型的预训练语言模型,在文本分类任务中表现优异,但原始BERT模型需要大量标注数据来进行微调训练,且参数规模大、时间复杂度高.在许多真实场景中,大量的标注数据是不易获取的,而且模型参数规模过大不利于在真实场景的实际应用.为了解决这一问题,提出了一种基于半监督生成对抗网络的BERT改进模型GT-BERT.采用知识蒸馏的压缩方法将BERT模型进行压缩;引入半监督生成对抗网络的框架对BERT模型进行微调并选择最优生成器与判别器配置.在半监督生成对抗网络的框架下增加无标签数据集对模型进行微调,弥补了标注数据较少的缺点.在多个数据集上的实验结果表明,改进模型GT-BERT在文本分类任务中性能优异,可以有效利用原始模型不能使用的无标签数据,大大降低了模型对标注数据的需求,并且具有较低的模型参数规模与时间复杂度.

文本分类、半监督、BERT、生成对抗网络、模型压缩

33

TP391.1(计算技术、计算机技术)

河北省高等学校科学技术研究重点项目ZD2014051

2023-03-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

187-194

相关文献
评论
暂无封面信息
查看本期封面目录

计算机技术与发展

1673-629X

61-1450/TP

33

2023,33(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn