复杂背景下SAR图像船舶目标检测算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-629X.2021.10.009

复杂背景下SAR图像船舶目标检测算法研究

引用
针对复杂背景SAR图像船舶目标检测易受地物干扰影响,导致模型检测率低的问题,提出将结合通道和空间的双注意力机制CBAM引入目标检测网络;将膨胀卷积和concat特征融合技术应用于目标检测网络中提升模型对小尺寸目标的鲁棒性;为了进一步提高模型的检测速度,使用轻量级MobileNet作为基础特征提取网络;同时采用一个新的二分类损失函数使模型训练能够对难易样本设置不同的权重.最后,通过在构建的复杂背景SAR图像船舶目标检测数据集SDATA上进行实验,实验结果表明该算法在复杂背景SAR船舶目标检测中其平均检测精度与综合评价指标F1-score值分别为88.9%和91.2%,检测速度达42.1 fps,从而验证了该模型不仅能够有效提升复杂背景SAR图像船舶目标的检测精度,而且在一定程度上提高了目标的检测速度.

深度学习;目标检测;SAR图像;双注意力机制;特征融合

31

TP312(计算技术、计算机技术)

陕西高等教育教学改革研究项目;长安大学教育教学改革研究项目

2021-10-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

49-55

相关文献
评论
暂无封面信息
查看本期封面目录

计算机技术与发展

1673-629X

61-1450/TP

31

2021,31(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn