基于ARIMA和小波神经网络组合模型的交通流预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-629X.2017.01.038

基于ARIMA和小波神经网络组合模型的交通流预测

引用
针对现阶段城市道路交通流预测精度不高的局限性,提出了一种基于差分自回归滑动平均( ARIMA)和小波神经网络( WNN)组合模型的预测方法来进行交通流预测。利用差分自回归滑动平均模型良好的线性拟合能力和小波神经网络模型强大的非线性关系映射能力,把交通流时间序列的数据结构分解为线性自相关结构和非线性结构两部分。采用差分自回归滑动平均模型预测交通流序列的线性部分,用小波神经网络模型预测其非线性残差部分,最终合成为整个交通流序列的预测结果。计算机仿真结果表明:组合模型的预测精度高于ARIMA模型和WNN模型各自单独使用时的预测精度,组合模型可以提高交通流预测精度,是交通流预测的有效方法。

交通流预测、差分自回归滑动平均模型、小波神经网络、组合模型

27

U491112(交通工程与公路运输技术管理)

国家自然科学基金资助项目61401236;南京邮电大学引进人才项目NY214005

2017-03-20(万方平台首次上网日期,不代表论文的发表时间)

共4页

169-172

相关文献
评论
暂无封面信息
查看本期封面目录

计算机技术与发展

1673-629X

61-1450/TP

27

2017,27(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn