基于聚类核的半监督情感分类算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-629X.2016.12.019

基于聚类核的半监督情感分类算法研究

引用
在互联网快速发展的今天,人类已经进入“大数据”时代,其中文本数据作为人类知识的载体,对于人类的进步与发展意义重大。如何运用大量未标记样本来提升文本情感分类的精度,也变得愈发重要。将半监督学习中的聚类核算法应用到情感分类问题中,给出基于聚类核的半监督情感分类算法。在标记样本和未标记样本上,建立加权无向图,求解聚类核,然后将该核函数用于SVM的情感分类器的训练上,完成情感分类工作。该方法直接将未标记样本所蕴含的信息融合到核中,不需要建立多个分类器,有效利用了未标记样本。实验结果表明,CKSVM算法在分类精度上明显优于基于Self-learning SVM和Co-training SVM的半监督情感分类算法,且在不同数据集上都有较好的适应性。

半监督学习、聚类核、图、情感分类

26

TP301.6(计算技术、计算机技术)

国家自然科学基金资助项目61070234,61071167,61501251;南京邮电大学引进人才科研启动基金资助项目NY214191

2017-01-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

87-91,95

相关文献
评论
暂无封面信息
查看本期封面目录

计算机技术与发展

1673-629X

61-1450/TP

26

2016,26(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn