最大流问题的改进最短增广链算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-629X.2016.08.011

最大流问题的改进最短增广链算法

引用
在最大流问题中,由于Ford-Fulkerson算法中增广链选取的任意性,导致该算法不是有效的多项式算法。经典的最短增广链算法是通过在增广过程中寻找最短增广链,从而排除增广链选取的任意性。但计算过程中为寻找最短增广链,需要根据原网络循环地构建剩余网络和剩余分层网络,步骤非常繁杂。为改善以上不足,基于经典最短增广链算法,提出改进最短增广链算法。该算法的思想是:若在增广剩余分层网络中流值的过程中得到饱和弧,则删除该弧对应于原网络中的弧,使原网络得以简化,以此可降低构建剩余网络和剩余分层网络的复杂性,从而优化最短增广链算法。理论和仿真实验都表明,改进算法不仅正确,而且比原算法效率更高。

最大流、最短增广链、剩余网络、剩余分层网络

26

TP301.6(计算技术、计算机技术)

国家自然科学基金青年基金项目61304169

2016-09-08(万方平台首次上网日期,不代表论文的发表时间)

共4页

52-54,59

相关文献
评论
暂无封面信息
查看本期封面目录

计算机技术与发展

1673-629X

61-1450/TP

26

2016,26(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn