一种基于TextRank的文本二次聚类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-629X.2016.08.002

一种基于TextRank的文本二次聚类算法

引用
针对传统文本聚类技术中存在的聚类精度一般或者运算时间复杂度过高等问题,文中首先介绍了两种较为常用的文本聚类技术:基于划分的K-means和基于主题模型的LDA。在分析各自缺陷的基础上,提出一种基于TextRank的文本二次聚类算法。该算法借鉴主题模型的思想,在传统的聚类过程中引入词聚类,并在关键词提取阶段融合词语的位置与跨度特征,减少了由局部关键词作为全局关键词带来的误差。实验结果表明,改进后的算法在聚类效果上要优于传统的VSM聚类和基于主题模型的LDA算法。

文本聚类、TextRank、提取、向量空间模型、LDA

26

TP391.9(计算技术、计算机技术)

国家自然科学基金资助项目61105064,61203311,61373116;陕西省教育专项科研计划14JK1667;西安邮电大学研究生创新基金项目CXL2014-23

2016-09-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

7-11

相关文献
评论
暂无封面信息
查看本期封面目录

计算机技术与发展

1673-629X

61-1450/TP

26

2016,26(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn