基于优化支持向量机的网络入侵检测技术研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-629X.2009.07.051

基于优化支持向量机的网络入侵检测技术研究

引用
入侵检测系统是任何一个完整的网络安全系统中必不可缺的部分.日益严峻的安全问题对于检测方法提出更高的要求.传统的入侵检测方法存在误报漏报及实时性差等缺点,将机器学习的技术引入到入侵监测系统之中以有效地提高系统性能具有十分重要的现实意义.支持向量机(SVM)是一种建立在统计学习理论(SLT)基础之上的机器学习方法,被成功地应用到入侵检测领域中.讨论了支持向量机优化算法及其在入侵检测中的应用.实验表明,基于优化支持向量机检测入侵的方法能较大地提高入侵检测系统的性能.

支持向量机、入侵检测、分类

19

TP393.08(计算技术、计算机技术)

国家自然科学基金资助项目60572128;安徽省自然科学研究计划项目KJ2008838ZC,KJ2007FR39;巢湖学院自然科学基金资助项目XLY-200713;巢湖学院科研启动基金

2009-07-23(万方平台首次上网日期,不代表论文的发表时间)

共3页

177-179

相关文献
评论
暂无封面信息
查看本期封面目录

计算机技术与发展

1673-629X

61-1450/TP

19

2009,19(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn