一种基于SCHMM的手语识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-629X.2009.07.043

一种基于SCHMM的手语识别方法

引用
手语识别的研究具有重大的学术价值和广泛的应用前景.在近些年的手语识别工作中,隐马尔科夫模型(HiddenMarkov Models,简称HMMs)起到了重要的作用.基于HMM的统计框架是当前动态识别领域的主流方法,同时也是该文的研究工作的理论基础.提出将半连续隐马尔科夫模型(SCHMM)用于手语识别,在理论上证明了SCHMM优于离散隐马尔科夫模型(DHMM)和连续隐马尔科夫模型(CHMM),可以避开DHMM中因矢量量化造成的信息损失,在保证识别率的前提下降低模型的复杂性和运算量.

手语识别、HMM、Semi-Continuous Hidden Markov Model、观察值

19

TP391.4(计算技术、计算机技术)

国家自然科学基金资助项目60533030;北京市自然科学基金资助项目4061001

2009-07-23(万方平台首次上网日期,不代表论文的发表时间)

共3页

149-151

相关文献
评论
暂无封面信息
查看本期封面目录

计算机技术与发展

1673-629X

61-1450/TP

19

2009,19(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn