KPCA算法及其在股市中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-629X.2004.12.044

KPCA算法及其在股市中的应用

引用
主成份分析法是用于简化数据的一种技术,现实世界中的数据复杂且庞大,对于某些复杂数据就可应用主成分分析法对其进行简化.文中着重介绍了健壮性KPCA算法并引入了粒度的思想,健壮性KPCA算法能推导出特征空间中信号重组的最小错误标准,并自动识别训练样本集中的无关数据,且经过计算消除它们对KPCA算法准确度的影响.可以将其应用于股票数据中,并将所得的主分量图与原图比较,发现效果明显,由此可看出KPCA算法是一种相当有用的算法.

主成份分析、健壮性KPCA、样本集

14

TP301.6(计算技术、计算机技术)

安徽省教育厅自然科学基金2003KJ007

2004-12-16(万方平台首次上网日期,不代表论文的发表时间)

共3页

129-131

相关文献
评论
暂无封面信息
查看本期封面目录

微机发展

1005-3751

61-1450/TP

14

2004,14(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn