基于无监督迁移成分分析和深度信念网络的轴承故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-3644.2019.06.009

基于无监督迁移成分分析和深度信念网络的轴承故障诊断方法

引用
针对轴承故障样本少导致识别精度低的问题,提出一种基于无监督迁移成分分析(unsupervised transfer component analysis,UTCA)和深度信念网络(deep belief network,DBN)的故障诊断方法.首先利用UTCA的核函数将不同工况样本特征映射到一个共享再生核Hilbert空间中,使得源域和目标域样本集更加相似,并通过最大均值偏差嵌入法(maximum mean discrepancy embedding,MMDE)判断能够迁移的源域数据,将源域样本迁移到目标域中,为深度学习提供充足的训练样本,解决了实际故障样本较少的问题;然后采用DBN模型对源域样本进行训练,再对映射后无标记的目标域样本进行故障诊断分析.利用不同工况下的滚动轴承实验数据进行算法验证,结果表明,与普通DBN、SVM、BPNN以及传统机器学习-UTCA融合方法相比,本文方法对滚动轴承故障的诊断精度更高.

故障诊断、滚动轴承、无监督迁移成分分析、深度信念网络、迁移学习、深度学习

42

TH165+.3;TH133.33

国家自然科学基金资助项目51775391;装备预研基金项目6142223180312

2019-12-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

456-462

相关文献
评论
暂无封面信息
查看本期封面目录

武汉科技大学学报(自然科学版)

1674-3644

42-1608/N

42

2019,42(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn