利用生物地理学优化算法获取城市扩展元胞自动机模型参数
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13203/j.whugis20160438

利用生物地理学优化算法获取城市扩展元胞自动机模型参数

引用
提出了一种基于生物地理学优化算法寻找城市扩展元胞自动机(cellular automata,CA)模型最佳参数的方法.转换规则制定及相应权重参数获取是构建城市扩展CA的核心和难点.生物地理学优化算法(biogeography-based optimization,BBO)通过模拟生物物种在栖息地的分布、迁移和灭绝来求解优化问题.利用BBO算法自动获取城市扩展CA模型参数值,构建BBO-CA模型进行城市扩展模拟实验,并与粒子群算法(particle swarm optimization,PSO)、蚁群算法(ant colony optimization,ACO)、遗传算法(genetic algorithm,GA)及逻辑回归(logistic regression,LR)等方法相比较.结果表明,BBO算法具有较好的收敛性,可有效地快速自动寻找城市扩展CA模型最佳参数组合,获取的空间变量权重参数较为合理;BBO-CA模型明显提升了城市用地模拟精度,城市用地模拟精度为72.5%,相对PSO、ACO、GA、LR各算法分别提升了1.1%、1.2%、2.7%和4.0%,Kappa系数达到0.700,分别提升了0.015、0.016、0.034和0.046,且整体空间布局与实际情况更为接近,验证了应用BBO算法的可行性与优势.

生物地理学优化算法、城市扩展、元胞自动机、地理模拟

42

P208;K901(一般性问题)

The National Natural Science Foundation of China,No.41571384.国家自然科学基金41571384

2017-09-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

1323-1329

相关文献
评论
暂无封面信息
查看本期封面目录

武汉大学学报(信息科学版)

1671-8860

42-1676/TN

42

2017,42(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn