基于OLDM与贝叶斯估计的鲁棒视觉跟踪
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13203/j.whugis20130535

基于OLDM与贝叶斯估计的鲁棒视觉跟踪

引用
提出了一种在线学习判别式模型OLDM(online learning discriminative model),并结合贝叶斯估计实现了对视觉运动目标的鲁棒跟踪.首先,通过对初始化的跟踪区域进行样本标记与聚类分析得到目标的判别式模型;然后,利用该模型在预测的跟踪区域内计算目标的似然分布;最后,在贝叶斯框架下完成目标状态的确定并对模型进行学习与更新.算法通过在线学习适时更新目标模型,增强了算法对目标表观变化的适应性.实验结果表明,本文算法能够有效地适应目标表现特征的复杂变化,对目标的尺度、光照、遮挡以及非刚性形变等具有较强的鲁棒性,算法的跟踪精度与稳定性比当前主流算法均有一定提高.

视觉跟踪、判别式模型、贝叶斯估计、模型更新

40

TP391;TP751(计算技术、计算机技术)

国家自然科学基金资助项目61175029,61473309;The National Natural Science Foundation of China,Nos.61175029,61473309.

2015-12-22(万方平台首次上网日期,不代表论文的发表时间)

1539-1544

相关文献
评论
暂无封面信息
查看本期封面目录

武汉大学学报(信息科学版)

1671-8860

42-1676/TN

40

2015,40(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn