联合多神经网络模型的藏文字校对方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-2279.2021.02.011

联合多神经网络模型的藏文字校对方法

引用
针对藏文字校对问题,提出一种不使用藏字字典的联合二层BiLSTM模型和CNN模型展开学习的藏字校对模型.模型通过研究藏文字构字语法、字母训练,得到藏文字母的向量表示,对字母向量进行BiGRU学习,所得的特征向量用三个卷积核进行CNN和全连接运算,最后用最小化交叉熵来优化模型查检藏文字的正确性.为了验证方法的实际表现,建立一共73155个藏文字实验语料,其中正样本占55.1%,负样本占44.9%.实验表明,该方法对藏文字对错识别率的F值达94.06%.

藏文字、神经网络模型、校对

42

TP391.1(计算技术、计算机技术)

国家自然科学基金;青海省应用基础研究项目

2021-06-02(万方平台首次上网日期,不代表论文的发表时间)

共4页

41-44

相关文献
评论
暂无封面信息
查看本期封面目录

微处理机

1002-2279

21-1216/TP

42

2021,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn