基于CNN的多光谱遥感图像地物覆盖分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-2279.2019.01.010

基于CNN的多光谱遥感图像地物覆盖分类

引用
随着科技水平的提高,深度学习算法的出现为高分辨率遥感图像的研究带来了新的突破,但国内对于将深度学习应用于遥感图像处理的研究尚未广泛开展.为填补此类空白,提出一种基于卷积神经网络(CNN)的对于高分辨率多光谱遥感图像进行自动分类的方法,对传统CNN框架进行一定的优化并加入Inception结构,进而横向比对其与支持向量机(SVM)分类算法的实际分类效果.以卫星拍摄的地面实物图片为例对该方法进行实验,结果表明,所提出的基于CNN的分类方法相比于传统方法在精度上有显著提升,纹理特征更加突出,分类效果更加出众.

遥感图像分类、卷积神经网络、支持向量机、径向基函数神经网络

40

TP751(遥感技术)

高分专项省域产业化应用项目70-Y40G09-9001-18/20;辽宁省教育厅基本科研重点项目L201701

2019-04-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

43-48

相关文献
评论
暂无封面信息
查看本期封面目录

微处理机

1002-2279

21-1216/TP

40

2019,40(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn