基于正样本对比与掩蔽重建的自监督语音表示学习
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11959/j.issn.1000-436x.2022142

基于正样本对比与掩蔽重建的自监督语音表示学习

引用
针对现有基于对比预测的自监督语音表示学习方法在训练时需要构建大量负样本,其学习效果依赖于大批次训练,需要耗费大量计算资源的问题,提出了一种仅使用正样本进行语音对比学习的方法,并将其与掩蔽重建任务相结合得到一种多任务自监督语音表示学习方法,在降低训练复杂度的同时提高语音表示学习的性能.其中,正样本对比学习任务,借鉴图像自监督表示学习中SimSiam方法的思想,采用孪生网络架构对原始语音信号进行两次数据增强,并使用相同的编码器进行处理,将一个分支经过一个前向网络,另一个分支使用梯度停止策略,调整模型参数以最大化2个分支输出的相似度.整个训练过程中不需要构造负样本,可采用小批次进行训练,大幅提高了学习效率.使用LibriSpeech语料库进行自监督表示学习,并在多种下游任务中进行微调测试,对比实验表明,所提方法得到的模型在多个任务中均达到或者超过了现有主流语音表示学习模型的性能.

语音表示、自监督学习、无监督学习、孪生网络

43

TN912.34

国家自然科学基金;国家自然科学基金

2022-08-11(万方平台首次上网日期,不代表论文的发表时间)

共9页

163-171

相关文献
评论
暂无封面信息
查看本期封面目录

通信学报

1000-436X

11-2102/TN

43

2022,43(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn