10.3969/j.issn.1002-0802.2023.06.001
基于深度学习的运动想象脑机接口研究综述
近年来,随着脑机接口(Brain-Computer Interface,BCI)技术的进一步发展,对特征提取技术的鲁棒性的需求也持续增加.深度学习(Deep Learning,DL)作为多层次的神经网络模型具有从高维数据中进行特征提取并从分层表示中学习的能力,在分类识别任务领域中的表现优于手工选择特征的传统机器学习方法.深度学习模型可以自动学习高维的EEG数据集从而提取有效特征,因此基于深度学习的脑机接口成为该领域新的研究趋势.卷积神经网络(Convolution Neural Network,CNN)、深度信念网络(Deep Belief Network,DBN)和递归神经网络(Recurrent Neural Network,RNN)是深度学习中对脑电信号进行分析的三大主流算法.主要介绍了这三大主流深度学习算法的基本原理.为了探索能更好契合脑电数据特点的分类模型,还探讨了它们在BCI中集成其他方法的实际运用.
脑机接口、深度学习、特征提取、脑电
56
TP391(计算技术、计算机技术)
2023-09-04(万方平台首次上网日期,不代表论文的发表时间)
共9页
673-681