10.13266/j.issn.0252-3116.2021.13.009
突发公共卫生事件中微博谣言的识别
[目的/意义]在"新冠"疫情这类突发公共卫生事件中,网络社交媒体上迅速产生大量关于疫情的言论,其中包含不少蓄意传播的谣言,不仅危害公众心理健康,而且会影响应对公共卫生事件的方案实施.识别突发公共卫生事件的谣言能够使民众正确面对危机,为社会安定、网络治理起到积极的维护作用.[方法/过程]首先对采集到的疫情期间已被证实的谣言进行深度分析,提取谣言文本的主要特征,包括上下文特征、话题类别特征、情感程度特征、关键词特征等;然后针对文本分类模型中的文本特征表达较为单一的问题,利用不同的模型对提取的谣言文本特征进行向量化,并对各类文本特征进行加强和融合.其中通过TF-IDF计算的词向量权重在捕获上下文特征的同时,能够加强词粒度的关键词特征信息.最后,使用BiLSTM+DNN模型对融合的特征向量进行分类判别.[结果/结论]实验结果表明,话题类别、情感程度等特征对谣言识别均有贡献,特别是经过强化后的词向量与其他特征融合后对识别准确率有明显提升,召回率、F1值等指标均达到90%以上,效果超过其他的谣言识别模型,说明笔者所构建的方法能够很好地实现对突发公共卫生事件背景下的谣言识别.
公共卫生事件、谣言识别、微博、多特征融合
65
TP393(计算技术、计算机技术)
本文系中央高校基本科研业务费交叉学科创新研究项目"大数据支持下网络谣言的智能消解机制研究"项目编号:2722021EK016
2021-08-11(万方平台首次上网日期,不代表论文的发表时间)
共9页
87-95