10.3321/j.issn:0564-3929.2007.05.001
模糊逻辑在土地利用遥感分类中的应用
由于影像信息提取过程蕴涵的诸多不确定性以及土地类别描述语境信息的含糊性影响,遥感数据的常规土地利用分类面临诸多困难与挑战.而模糊分类系统作为一种最为强大的软分类器,能处理、分析和表征遥感信息中传感器测量数据的不精确性、土地类别描述中的含糊性以及模型模拟中的不严密性,从而输出更能表达人类知识缺陷、更符合真实世界客观事实的分类结果,因此被认为是一种较好的土地利用遥感分类手段.本文以南京城市边缘带一样区为例,在采用地物导向分割技术对遥感影像分割的基础上,充分利用影像地物自身的光谱组合特征值以及其他空间形状、拓扑特征以及语境关系信息,按照模糊监督分类的过程来对研究区土地利用信息进行提取.研究结果表明基于遥感数据源的土地利用模糊分类系统可以获得比常规硬分类手段更为合理、信息含量更为丰富的输出结果.
遥感影像、土地利用、地物导向分割、不确定性、模糊分类
44
F301.24(农业经济理论)
国家自然科学基金;中国科学院知识创新工程重要方向项目
2007-12-10(万方平台首次上网日期,不代表论文的发表时间)
共7页
769-775