基于可见近红外和中红外近地面光谱数据融合的土壤有机碳含量反演
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19336/j.cnki.trtb.2021072202

基于可见近红外和中红外近地面光谱数据融合的土壤有机碳含量反演

引用
[目的]以传统的实验室分析方法进行大规模土壤有机碳(SOC)含量调查耗时、费力、成本高昂,以土壤可见近红外(VNIR)、中红外(MIR)光谱或两光谱数据融合手段能够快速预测SOC含量,但预测精度不一、特别是光谱数据融合技术应用于土柱样本的效果尚待考察.[方法]从全球土壤光谱库筛选出同时具有VNIR光谱、MIR光谱和SOC含量的677个土柱共计3755个土样.光谱数据经Savitzky–Golay平滑和一阶微分预处理后,用Kennard–Stone算法进行建模和验证的集合划分,使用偏最小二乘回归与随机森林方法分别建立以VNIR、MIR以及两者融合的VNMIR光谱为自变量的SOC含量预测模型,并对模型精度进行评估.[结果]MIR光谱模型的SOC预测精度优于VNIR光谱模型,VNMIR光谱模型预测精度低于MIR光谱模型但优于VNIR光谱模型.[结论]使用光谱数据融合技术预测SOC含量并非一定比使用单一光谱数据的精度高,就本例而言使用MIR光谱数据构建预测模型的方法是快速、准确预测大尺度时空范围SOC含量的最佳手段.

土壤有机碳、土柱、光谱库、可见近红外、中红外、数据融合

53

S127;TP79(农业物理学)

国家自然科学基金;华中师范大学青年团队项目

2022-06-06(万方平台首次上网日期,不代表论文的发表时间)

共7页

301-307

相关文献
评论
暂无封面信息
查看本期封面目录

土壤通报

0564-3945

21-1172/S

53

2022,53(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn