基于极限学习机利用可见-近红外光谱数据判别土壤类型的方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19336/j.cnki.trtb.2020.03.01

基于极限学习机利用可见-近红外光谱数据判别土壤类型的方法研究

引用
为了实现土壤类型的快速无损识别,提出了一种利用可见-近红外光谱、基于极限学习机的土壤类型鉴别方法.首先,获取4种不同类型土壤的320个样本波长在325~1075 nm范围内的可见-近红外光谱数据;其次,用主成分分析的数学方法对数据进行降维处理,最终提取了三个主成分来代表原光谱数据;再次,将320个样本的数据随机分为测试集和预测集两个部分,建立极限学习机模型,利用该模型对土壤类型进行识别.实验结果表明,将极限学习机应用于土壤类型的识别精度可达100%,其训练速度和泛化性优于BP神经网络和支持向量机,能够快速、准确、无损鉴别土壤类型,使用方便,具有推广价值.

可见-近红外光谱、极限学习机(ELM)、土壤、分类识别

51

S152.3(土壤学)

中铁第四勘察设计院集团有限公司科技研究开发项目;国家重点研发计划多尺度水盐诊断与预测技术及方法

2020-10-16(万方平台首次上网日期,不代表论文的发表时间)

共6页

505-510

相关文献
评论
暂无封面信息
查看本期封面目录

土壤通报

0564-3945

21-1172/S

51

2020,51(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn