基于Shapley值的分类预测模型变量筛选方法改进
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13546/j.cnki.tjyjc.2023.03.007

基于Shapley值的分类预测模型变量筛选方法改进

引用
在分类预测模型的自变量间存在交互效应时,传统Shapley值法的可加性无法满足,造成变量筛选效果变差,导致分类模型的预测精度降低.针对此问题,文章提出使用稳健独立成分分析,从原始数据中估计出具有独立性的数据集并对其进行Shapley值分解,从而提高变量筛选的准确度.统计模拟与实证分析的结果表明,改进后的方法在变量筛选上的表现优于传统Shapley值法.

分类预测模型、变量筛选、Shapley值法、稳健独立成分分析

39

O21(概率论与数理统计)

国家自然科学基金71963008

2023-03-20(万方平台首次上网日期,不代表论文的发表时间)

共5页

38-42

相关文献
评论
暂无封面信息
查看本期封面目录

统计与决策

1002-6487

42-1009/C

39

2023,39(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn