基于RBF神经网络的铁路旅客周转量预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16668/j.cnki.issn.1003-1421.2017.12.13

基于RBF神经网络的铁路旅客周转量预测研究

引用
为实现对一定时期内旅客周转客流量进行有效预测,在分析RBF神经网络原理和铁路旅客周转量数据统计的基础上,结合时间序列归一化转化分析方法,建立基于RBF神经网络的铁路旅客周转量预测模型.选取2000-201 3年实际的旅客周转量数据对神经网络模型进行训练,并用2014-2015年数据对模型精度进行可靠性检验.检验结果表明,RBF神经网络模型具有可靠的预测精度,可以有效地对铁路旅客周转量进行预测,从而更好地为铁路运输组织、站场线路设计等提供可靠的依据.

铁路、旅客周转量、神经网络、非线性、时间序列、运量预测

39

U293.1(铁路运输管理工程)

湖南省教育科学“十三五”规划课题XKJ17BZY040;湖南省高校科研项目15C0908

2018-01-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

65-69

相关文献
评论
暂无封面信息
查看本期封面目录

铁道运输与经济

1003-1421

11-1949/F

39

2017,39(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn