基于CNN-LSTM深度学习的列车荷载与桥面系局部健康状态识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-8360.2022.08.015

基于CNN-LSTM深度学习的列车荷载与桥面系局部健康状态识别研究

引用
桥梁健康监测数据的深度分析是发挥健康监测系统作用的必然途径,由于监测测点的有限性和监测数据受环境效应等因素影响,很多监测结果可利用率不高.在此背景下,以某公铁两用大跨度钢桁架桥桥面系纵梁应变及温度长期监测数据为依据,基于CNN-LSTM深度学习,对有限应变监测数据在桥梁列车和局部健康状态识别应用进行有益探索;采用集合经验模态分解(EEMD)算法对车致应变进行提取与分析,根据列车过桥应变峰值进行列车荷载和车型识别.实际数据有效性检验结果表明,纵梁截面单一应变测试结果对该桥列车荷载识别准确率可达92.3%.利用提取的桥面纵梁测点应变监测数据训练CNN-LSTM模型,并进行残差预测,使用指数加权移动平均法,结合列车荷载因素进行桥面系局部损伤预警阈值分析,利用实测数据对模型进行深入训练和验证,并与CNN、RNN和LSTM模型进行对比分析.分析结果表明,本文模型在该桥桥面系测试节间纵梁损伤识别准确度优于其他模型,可在桥梁局部出现损伤时,进行健康状态判别与预警;随着测试截面的增加,可进一步扩展本文方法识别范围,提高识别效果.

桥梁健康监测、列车荷载识别、健康状态识别、深度学习、CNN-LSTM

44

U446(桥涵工程)

国家自然科学基金;河北省重点研发计划

2022-10-08(万方平台首次上网日期,不代表论文的发表时间)

共11页

135-145

相关文献
评论
暂无封面信息
查看本期封面目录

铁道学报

1001-8360

11-2104/U

44

2022,44(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn