基于深度残差网络的轨道结构病害识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-8360.2020.08.013

基于深度残差网络的轨道结构病害识别

引用
传统的轨道检测方法需要事先对图像进行定位和分割等预处理操作,而定位和分割操作的误差又会直接干扰到后续的分类识别,多环节误差叠加,使得识别准确率低.同时,传统检测方法还需要理想的背景环境,当背景环境或结构类型发生改变时,其算法不再适用,不具备良好的鲁棒性.因此,提出一种基于深度残差网络的轨道结构病害检测方法,该方法不需要对原始图像进行预处理,同时深度残差网络以其更深的层数和更复杂的网络结构可以高效提取出各类轨道结构图像的特征并进行分类识别.以某客货共线线路隧道的钢轨踏面、钢轨扣件和支承块图像建立数据库,通过迁移学习的方式在数据库上训练网络模型,实现对钢轨、扣件及支承块三种轨道结构的病害识别,识别准确率高达98.51%.在此基础上,从识别准确率、损失函数值等方面对深度残差网络在轨道结构病害识别中的应用效果进行对比、分析,验证方法的有效性.

轨道结构、病害识别、深度残差网络、迁移学习

42

U216.3(铁路线路工程)

国家重点研发计划;中央高校基本科研业务费;北京市科技计划;京沪高速铁路股份有限公司科研计划;中国铁路总公司科技研究开发计划

2020-09-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

100-106

相关文献
评论
暂无封面信息
查看本期封面目录

铁道学报

1001-8360

11-2104/U

42

2020,42(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn