尺度自适应的铁路异物侵限PSA-Kcf降维跟踪方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-8360.2019.05.009

尺度自适应的铁路异物侵限PSA-Kcf降维跟踪方法

引用
针对铁路异物侵限存在尺度上的外观变化,导致现有目标跟踪算法容易学习到过量背景或局部纹理信息,从而引发跟踪框漂移的问题,提出一种融合尺度估计的核相关滤波目标跟踪算法.利用视觉背景提取器ViBe对铁路沿线侵限异物进行检测,通过密集循环采样和尺度金字塔技术分别提取初始化跟踪框的FHOG特征,用来训练一个核相关位置滤波器和一个PCA降维的尺度滤波器,以实现尺度自适应的铁路侵限异物快速跟踪.实验结果表明:PSA-Kcf算法在跟踪精度上优于无尺度估计环节的生成类算法Mean Shift和原生核相关滤波算法Kcf,略高于尺度自适应的SA-Kcf和SAMF算法;在跟踪速度上明显快于Mean Shift、SA-Kcf和SAMF算法,能达到与Kcf算法相当的快速跟踪效果.

异物侵限、视觉背景提取器、密集循环采样、FHOG特征、核相关滤波、PCA降维

41

TP319;U215.8(计算技术、计算机技术)

国家自然科学基金51867009,51567008;江西省杰出青年人才资助计划20162BCB23045;江西省自然科学基金20171BAB206044;江西省重点研发计划20181BBE58010

2019-07-18(万方平台首次上网日期,不代表论文的发表时间)

共11页

71-81

相关文献
评论
暂无封面信息
查看本期封面目录

铁道学报

1001-8360

11-2104/U

41

2019,41(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn