基于不平衡文本数据挖掘的铁路信号设备故障智能分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-8360.2018.02.009

基于不平衡文本数据挖掘的铁路信号设备故障智能分类

引用
针对铁路信号设备不平衡故障文本数据,提出基于文本挖掘的铁路信号设备故障智能分类模型.采用TF-IDF模型实现电务信号设备故障文本的特征提取并转换为向量,基于Voting的方式实现多分类器集成学习分类.该模型利用SVM-SMOTE算法对TF-IDF转换后的小类别文本向量数据进行随机生成,采用逻辑回归、朴素贝叶斯、SVM等基分类器和GBDT、随机森林集成分类器对平衡后的数据进行分类,考虑不同分类器的适用特点,通过Voting方式进行多分类器集成学习.通过对某铁路局2012—2016年铁路信号设备故障文本数据进行试验分析,表明该模型可使故障分类的准确率、召回率和F-score均得到显著提升.

铁路信号设备、故障分类、不平衡文本数据、SMOTE、基分类器、集成分类器、集成学习

40

U284(铁路通信、信号)

中国铁道科学研究院院基金重大课题2017YJ005,2017YJ006

2018-03-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

59-66

相关文献
评论
暂无封面信息
查看本期封面目录

铁道学报

1001-8360

11-2104/U

40

2018,40(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn