基于压缩感知的稀疏度自适应图像修复
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-8360.2014.09.11

基于压缩感知的稀疏度自适应图像修复

引用
压缩感知理论利用信号的稀疏特性,能够以较少的采样数据恢复出完整的信号。本文基于压缩感知理论,提出一种稀疏度自适应图像修复算法。有别于传统的图像修复方法,本文首先根据大量样本数据进行K-奇异值分解(K-SVD)字典训练,用训练得到的超完备字典取代正交基函数;然后根据图像的退化模型对感知矩阵加以约束;最后针对二维破损图像稀疏度未知问题,在重构阶段提出了一种稀疏度自适应正则化正交匹配追踪算法(SA-ROMP)实现破损图像修复。本文引入的超完备字典能够自适应地根据训练样本进行特征提取,具有更强的稀疏表示能力。重构阶段的 SA-ROMP算法在迭代过程中利用 logistic回归函数获取阈值,再通过阈值对残差与感知矩阵的相关系数进行判定,能够自适应选择原子候选集的个数。图像修复实验结果验证了本文算法的可行性,并且修复效果明显优于其他同类算法。

压缩感知、图像修复、K-奇异值分解、稀疏度自适应、正则化正交匹配追踪(ROMP)

TN911.73

国家自然科学基金60972106;河北省自然科学基金F2013202254;天津市应用基础及前沿技术研究计划11JCYBJC00900

2014-10-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

52-59

相关文献
评论
暂无封面信息
查看本期封面目录

铁道学报

1001-8360

11-2104/U

2014,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn