铁路客运量数据挖掘预测方法及应用研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1001-8360.2004.05.001

铁路客运量数据挖掘预测方法及应用研究

引用
在分析铁路客票数据特征的基础上,提出采用分段模糊BP神经网络对铁路客运量进行数据挖掘预测.通过对铁路客票数据的分段处理,提高了网络学习的收敛速度和预测精度,并在MATLAB环境下建立了分段模糊BP神经网络模型,在仿真试验中各分段的期望输出和实际输出之间吻合较好,从而证明了分段模糊的数据处理方法是有效的;同时,预测的客运量和实际客运量数值非常接近,说明分段模糊BP神经网络得到的数据挖掘预测模型对铁路客运量有很好的预测效果,该预测模型可信,为预测铁路客运量提出了一种新思路.

铁路客票数据、数据挖掘、分段模糊BP神经网络、旅客发送量

26

U492.413(交通工程与公路运输技术管理)

2004-11-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

1-7

相关文献
评论
暂无封面信息
查看本期封面目录

铁道学报

1001-8360

11-2104/U

26

2004,26(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn