基于门控循环残差网络的滚动轴承故障诊断研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1008-7842.2023.03.09

基于门控循环残差网络的滚动轴承故障诊断研究

引用
滚动轴承的运行状态对整体机构的工作状态影响很大,防止因滚动轴承失效而产生的安全事故极为重要.而一维信号只利用卷积神经网络CNN(Convolutional Neural Networks)输出结果时无法充分利用数据间的时序信息的问题,因此,文中结合门控循环单元GRU(Gated Recurrent Unit)在处理时序数据所具有的优势,提出了一种门控循环残差网络结构,将CNN在强大的特征提取的优点与GRU处理时序数据的优点有机结合起来.为了验证算法的有效性,采用凯斯西储大学轴承数据集与齿轮箱轴承台架试验进行轴承故障诊断分析,同时引入常见神经网络作为对比,检验不同模型的分类性能.结果表明,在相同试验条件下相较于卷积神经网络等深度学习网络,文中算法具有更高的故障识别准确度和稳定性.

故障诊断、滚动轴承、卷积神经网络、门控循环单元、残差神经网络

43

U270(车辆工程)

国家重点研发计划;神华科技创新项目

2023-07-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

57-63

相关文献
评论
暂无封面信息
查看本期封面目录

铁道机车车辆

1008-7842

11-1917/U

43

2023,43(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn