基于Bi-LSTM网络的铁路短期货运量预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16669/j.cnki.issn.1004-2024.2022.02.10

基于Bi-LSTM网络的铁路短期货运量预测研究

引用
短期货运量预测研究是铁路运输企业编制日常工作计划的重要依据,准确的货运量预测结果对铁路货运组织工作具有积极意义.针对铁路短期货运量预测,建立基于双向长短时记忆网络(Bi-LSTM)的短期货运量预测模型,以某铁路局集团公司4 122 d、136个月的货运发送量为实验数据分别进行各月和每日货运发送量的预测,其误差分别为5.30%和6.92%,并在同样的训练集、测试集数据分集上,设置相同的超参数,与RF,SVM,XGBoost和LSTM4种模型的预测结果进行比较,验证Bi-LSTM网络在铁路短期货运量预测上的精确度和泛化能力较好.

铁路运输、货运量、短期预测、双向长短时记忆网络、深度学习

40

U294.1+3(铁路运输管理工程)

国家自然科学基金71761023

2022-04-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

52-58

相关文献
评论
暂无封面信息
查看本期封面目录

铁道货运

1004-2024

11-2933/U

40

2022,40(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn