基于改进SSD模型的高铁扣件定位算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13238/j.issn.1004-2954.201906200003

基于改进SSD模型的高铁扣件定位算法

引用
高铁扣件的检测对于保障铁路的正常运行起着十分重要的作用.针对高铁扣件定位精度不足以及传统定位算法无法定位道岔处扣件的问题,设计一种改进的SSD(single shot detector)深度学习扣件定位算法,即Improved_SSD.首先采用ResNet101更换经典SSD深度学习模型中的VGG16,增加网络深度的同时提高特征的抓取能力;然后利用膨胀卷积扩大网络的感受野,以不增加模型额外结构的方式提高模型的鲁棒性;最后提出一种非极大加权抑制方法,进一步提高扣件的定位精度.实验结果表明:与经典SSD算法相比,本文算法对扣件定位的召回率和精度分别提高了3.4%和4.7%;与其他几种扣件定位算法相比,本文算法不仅提高了对普通轨道扣件的定位精度,而且解决了传统定位算法无法定位道岔处扣件的问题.

扣件定位、深度学习、SSD模型、膨胀卷积、非极大加权抑制

64

U213.5+3;TP391.41(铁路线路工程)

四川省科技计划项目2018GZ0361

2020-05-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

24-29

相关文献
评论
暂无封面信息
查看本期封面目录

铁道标准设计

1004-2954

11-2987/U

64

2020,64(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn