求解极坐标系下反应扩散方程的紧致隐积分因子方法
反应扩散方程在物理、化学和生物等领域有着重要的应用.以往的工作主要在矩形区域上考虑求解,本文研究圆形和环形区域上求解反应扩散方程.首先将反应扩散方程写成极坐标形式,利用二阶有限差分方法在空间r方向和θ方向分别进行离散,将网格上的数值解以矩阵形式表示,并且将微分算子离散成矩阵形式,从而得到紧致形式下的非线性常微分方程组,然后应用隐积分因子方法求解该非线性常微分方程组.紧致隐积分因子方法不仅降低了存储量,而且在每一个时间层只需要求解局部的非线性代数方程组.最后给出数值算例,选取带有精确解的反应扩散方程以及Schnakenberg模型,在圆形和环形区域上求解反应扩散方程组,数值结果显示该方法能够快速且准确地计算.
反应扩散方程、极坐标、紧致隐积分因子方法、有限差分、图灵斑图
42
辽宁省自然科学基金20180550996
2021-07-14(万方平台首次上网日期,不代表论文的发表时间)
共9页
146-154